Analysis of Reimbursement for Next Generation Sequencing (NGS) on Patients’ Tumors in the Context of a Personalized Medicine Program

Brown TD1, Tameishi M1, Liu X1, Scanlan JM2, Beatty JD1, Drescher CW1, Pagel JM1, Gold PJ1, Alexander S1, Summers LK1, Brindle M1, Varghis N1, Yates J1, Fondren KN3, Birchfield GR1, Dong DE1, Benkers TL1,4, Wahl TA1, Ramsey SD5, Berry AB1,3.

1Swedish Cancer Institute, Seattle, WA; 2Swedish Medical Center, Seattle, WA; 3CellNetix Pathology & Laboratories, Seattle, WA; 4Swedish Neuroscience Institute, Seattle, WA; 5Fred Hutchinson Cancer Research Center, Seattle, WA
Background

• Increasingly, genomic changes in patients’ tumors are used to inform individualized management.

• Reimbursement policies for NGS testing vary widely among private and public insurers.

• While drug costs are the greatest challenge in personalized or precision medicine, cost and reimbursement are substantial barriers to genomic profiling with NGS.

• We examined variation in coverage and reimbursement for a cohort of cancer patients treated at a tertiary oncology center.
Background: Swedish Cancer Institute (SCI)
Personalized Medicine Research Program (PMRP)

• 2015 Jan: SCI Molecular Tumor Board.
• 2015 Nov: Cloud-based PMRP IT Platform.
SCI PMRP: Methods

- A custom designed NGS 68 gene alteration (GA) panel, covering clinically relevant genes and regions, was offered early in the course of management.
- GA were categorized as actionable (on label indication), or applicable [off label and/or clinical trial (CT) indication].
- The NGS results were used to:
 - Prioritize standard therapies;
 - Match patients (pts) with clinical trials (CT);
 - Serve as a data mining resource.
SCI PMRP: Methods (Cont’d)

• An IRB approved prospective registration protocol was activated in 2014, to establish a centralized longitudinal, molecular phenotypic, and research data repository.
 • NGS panel ordered based on medical necessity.
 • A cloud-based informatics platform was developed to:
 – Manage PMRP;
 – Facilitate CT matching;
 – Perform quality assurance/quality improvement;
 – Pursue research initiatives.
SCI PMRP: Methods (Cont’d)

- **Cost to Participate in PMRP:** None.
- **Languages:** Consent form in English, Vietnamese, Korean, Japanese, Mandarin & Cantonese, Russian and Spanish.
- **Evaluation of Reimbursement for NGS:** performed from Jan, 2015 through May, 2017, with use of CPT code 81455.
- **Reimbursement Analyzed Based on:** payer type; pt age and gender; diagnosis; localized vs. metastatic disease; and actionability of data.
SCI PMRP: Results

Demographics and Stage

• As of 05/5/2017, 951 pts gave informed consent, with 930 pts enrolled.
• 602 pts evaluable on PMRP with NGS reimbursement and demographic data.
 • Median age 62.
 • 262 (44%) male; 340 (56%) female.
 • Of pts with documented race: Caucasian-501 pts (89%); Asian-39 pts (7%); African American/African-15 (3%); Native American or Alaska Native-7 (1%); Native Hawaiian or Other Pacific Islander-2 (<1%)
 • Of solid tumor pts with documentable stage: 183 pts (52%) had Stages I, II, or III; 170 pts had Stage IV (48%).
SCI PMRP: Results
Primary Cancer Site

Most Common Documented Primary Sites

<table>
<thead>
<tr>
<th>Primary Site</th>
<th># of Pts</th>
<th>(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central Nervous System</td>
<td>102</td>
<td>(18%)</td>
</tr>
<tr>
<td>Breast</td>
<td>67</td>
<td>(12%)</td>
</tr>
<tr>
<td>Colon and Rectum</td>
<td>65</td>
<td>(12%)</td>
</tr>
<tr>
<td>Lung</td>
<td>55</td>
<td>(10%)</td>
</tr>
<tr>
<td>Ovary</td>
<td>39</td>
<td>(7%)</td>
</tr>
<tr>
<td>Hematologic</td>
<td>35</td>
<td>(6%)</td>
</tr>
<tr>
<td>Pancreas</td>
<td>30</td>
<td>(5%)</td>
</tr>
<tr>
<td>Uterus</td>
<td>24</td>
<td>(4%)</td>
</tr>
<tr>
<td>Skin</td>
<td>15</td>
<td>(3%)</td>
</tr>
<tr>
<td>Esophagus</td>
<td>13</td>
<td>(2%)</td>
</tr>
<tr>
<td>Intrahepatic Bile Ducts</td>
<td>11</td>
<td>(2%)</td>
</tr>
</tbody>
</table>

Presented by: Thomas D. Brown, MD, MBA
Abstract #6506
SCI PMRP: NGS Results

Evaluable 602 Pts with NGS Cases

- No Gene Alteration: 20 Pts (3%)
- No NGS Results: 14 Pts (2%)
- Unknown Significance: 137 Pts (24%)
- Gene Alterations: 568 Pts (95%)
- Actionable/Applicable: 431 Pts (76%)

Presented by: Thomas D. Brown, MD, MBA

Abstract #6506
SCI PMRP: Top Actionable Gene Alterations (GAs)

- **KRAS**: 82 (62%)
- **PIK3CA**: 13 (10%)
- **EGFR**: 11 (8%)
- **BRAF**: 9 (7%)
- **NRAS**: 7 (5%)
- **PTEN**: 2 (2%)
- **TET2**: 2 (2%)
- **AKT1**: 2 (2%)
- **VHL**: 1 (1%)
- **GNA11**: 1 (1%)
- **ERBB2**: 1 (1%)
- **HRAS**: 1 (1%)
SCI PMRP: Top Applicable Gene Alterations (GAs)

- TP53: 177 (27%)
- TPMT: 65 (10%)
- APC: 56 (9%)
- TVMS: 55 (8%)
- PTEN: 51 (8%)
- PIK3CA: 50 (8%)
- IDH1: 34 (5%)
- CDKN2A: 20 (3%)
- TET2: 18 (3%)
- BRAF: 14 (2%)
- CTNNB1: 12 (2%)
- FBXW7: 11 (2%)
- KRAS: 10 (2%)

Presented by: Thomas D. Brown, MD, MBA
Abstract #6506
Reimbursement Frequency and Payment by Payer

- Medicare HMO has higher frequency of reimbursement than Private HMO ($p<.04$).
- Payments by both Private and Medicare HMOs were higher than other payers ($p<.001$).

<table>
<thead>
<tr>
<th>Payer</th>
<th>Frequency of Reimbursement (%</th>
<th>Mean ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medicaid</td>
<td>57%</td>
<td>30 pts $1,341</td>
</tr>
<tr>
<td>Private Non-HMO</td>
<td>21%</td>
<td>55 pts $1,596</td>
</tr>
<tr>
<td>Private HMO</td>
<td>51%</td>
<td>37 pts $2,075</td>
</tr>
<tr>
<td>Medicare Non-HMO</td>
<td>0%</td>
<td>153 pts $0</td>
</tr>
<tr>
<td>Medicare HMO</td>
<td>66%</td>
<td>33 pts $1,526</td>
</tr>
</tbody>
</table>

Presented by: Thomas D. Brown, MD, MBA

Abstract #6506
Association of Actionability with Reimbursement

- Frequency of reimbursement and payment for pts with \(\geq 2 \) actionable mutations were significantly lower than for pts with 0 or 1 actionable mutations (\(p < .01 \)).

<table>
<thead>
<tr>
<th>Mean R ($)</th>
<th>Frequency of Reimbursement (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$600</td>
<td>35%</td>
</tr>
<tr>
<td>$400</td>
<td>30%</td>
</tr>
<tr>
<td>$200</td>
<td>25%</td>
</tr>
<tr>
<td>$0</td>
<td>20%</td>
</tr>
</tbody>
</table>

171 Pts	(33%)
206 Pts	(29%)
225 Pts	(18%)

Presented by: Thomas D. Brown, MD, MBA
Abstract #6506
Association of Age with Reimbursement

- Younger age was associated with more frequent and higher reimbursement (31% in pts < 65 years, 17% in pts ≥ 65 yo) (p < .001).
- Among pts ≥ 65 yo, frequency (p < .001) and payments (p < .005) by Medicare HMO (69%; $1,003) were higher than Private payers (19%; $361).
NGS Reimbursement Denial Based on Denial Codes

- Denials based on “not covered,” and “investigational therapy” were the most common reasons for lack of reimbursement.

Presented by: Thomas D. Brown, MD, MBA
Abstract #6506
Conclusions

• One third of patients received some reimbursement for NGS testing.
• Reimbursement was more frequent and higher in managed care programs, both Private and Medicare. No reimbursement was received from non-HMO Medicare.
• Reimbursement was more likely for younger age patients.
• Actionable NGS results were associated with less frequent and lower reimbursement.
Conclusions (Cont’d)

• Neither cancer diagnosis nor stage were significantly associated with reimbursement.

• “Not covered” and “Investigational” were the most common reasons for denial.

• These data demonstrate the need for rational, transparent, and consistent reimbursement policies, along with a value-based reimbursement model for NGS across all payer groups.
SCI PMRP TEAM

Principal Investigator
- Thomas D Brown, MD, MBA

Co-Principal Investigator
- Philip J Gold, MD
- Anna Berry, MD

Co-Principal Investigator
- Charles W Drescher, MD

Co-Principal Investigator
- John Pagel, MD, PhD

Technical Expert
- Danbin Xu, MD, PhD

Investigator
- Shlece Alexander
- David Beatty
- Madeleine Brindle
- Andy Case
- Janell Duey
- Patra Grevstad
- Desiree Iriarte
- Ryan Johnson
- Justin Jones
- John Kaneko
- Soohee Lee
- Xiaoyu Liu
- Donielle O’Connor
- Scott Ramsey (HICOR/Fred Hutch)
- James Scanlan
- Lauren Summers
- Mariko Tameishi
- Paul Tittel
- Nina Varghis
- Jim Yates